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In order for a mathematical model of a biomedical system to be
valuable for experimental and clinical research it must be
designed in accordance with the experimental or clinical problem.

5.1 Introduction

Neurological and psychiatric disorders such as Parkinson’s disease and clinical de-
pression are both diseases of the nervous system. Disordersof different autonomic
functions, including disturbances of sleep, energy balance, and hormonal secretion
also have their origin in brain dysfunctions. However, while diseases associated
with energy control or hormonal secretion can be diagnosed by measuring specific
parameters (so-called biomarkers) such as blood glucose orhormone concentration,
diagnosis is much more difficult for psychiatric disorders such as clinical depression
or manic-depressive states, also known as unipolar and bipolar disorders.

Many of the neurological diseases can be attributed to specific dysfunctions, e.g.
in the dopamine system for Parkinson’s disease, or the destruction of cholinergic
receptors at the motor endplate in the case of Myasthenia gravis (pseudo paralysis,
[11]). For sleep disorders and for clinical depression and manic-depressive states
on the other hand there are no specific biomarkers on which diagnosis and treat-
ment can rely. The disorders manifest in the patient’s clinical psychopathology and,
although attempts are being made to correlate different forms of depression with
over- or under-expression of particular genes, the diagnosis is essentially based on
the doctor’s impression of the patient, statements by persons related to the patient,
and answers to standardized questionnaires [10].

An additional problem in the treatment of psychiatric disorders is obviously that,
while the disease manifests in the patient’s behavior, the pharmaceutical treatment
interferes with cellular and subcellular mechanisms at thelevel of ion channels,
transporters and genes. Figure 5.1A illustrates the different functional levels that
need to be brought together to achieve an understanding of these diseases that can
serve as the basis for a rational treatment:

Alteration of a single process at the cellular or subcellular level, by spontaneous
malfunction or due to the action of a drug, can drastically change the intra-cellular
dynamics. This, in turn, can significantly alter the excitability and sensitivity of in-
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dividual neurons, thereby also changing the activity of neuronal networks. This may
again have consequences for the functionality of specific brain areas which finally
can lead to changes in sensory or motor functions, emotions,mood, or behavior.
Moreover, since psychiatric disorders may originate in external circumstances, the
proper understanding also requires insights into the inverse causation cascade.

In addition, at all of these vertical levels there is a wide range of systemic interac-
tions on the horizontal level, e.g., through the multiple interlinked second messenger
pathways, through the mutual interactions between ion channels, and via the signal
transmissions between individual neurons. These horizontal interdependences are
illustrated in Fig. 5.1B where we have drawn the connectionsamong some of the
different brain areas involved in the regulation of sleep. Even such a simple diagram
demonstrates that it is not sufficient to understand how changes on the cellular or
subcellular levels affect the functioning of a specific brain area, because the changes
will spread to and affect the function of other brain areas aswell.

This fantastic interconnectedness serves to make neuronalsystems flexible and
adaptive on one hand and robust and self-maintaining on the other. At the same time,
this interconnectedness is an essential precondition for the enormous information
handling capacity of the brain. However, this interconnectedness also contributes to
making psychiatric diseases exceedingly difficult to understand and model. Despite
all its qualities, the human brain soon reaches its limits inattempts to overlook
even a comparatively simple system, particularly if this system includes feedback
mechanisms with delays, instabilities and nonlinear dynamic phenomena.

The purpose of this chapter is to discuss different approaches to neuronal mod-
eling and their physiological rationale. The so-called conductance-based approach
will be highlighted as a method that allows mathematical models to be developed in
close agreement with the underlying physiological mechanisms. With this approach
we can start to examine the causes of diseases and the action of drugs in a clinical
and pharmacologically relevant perspective. We’ll present examples of neuronal dy-
namics at various levels of the brain, ranging from simulations of individual neurons
to complex interactions between different brain areas in the context of the so-called
sleep-wake cycle. We’ll be particularly interested in discussions of physiologically
justified simplifications of the models and of the possibility of extending the models
to include different functional levels.

In this context, it is worth emphasizing that the obstacles that prevent a faster
progress and a more effective use of mathematical modeling and computer simu-
lations (biosimulation) in the life sciences are related primarily to human commu-
nication problems across established disciplinary boundaries. Experimentalists and
clinicians often have difficulties in exploiting the fantastic advantages of a mathe-
matical description, while mathematicians, physicist andengineers lack the required
understanding of physiological and pharmacological processes as well as of specific
problems in experimental and clinical research. Living systems, and particularly of
course the brain, represents an enormous challenge to the life sciences, but the chal-
lenge to understand such systems is in no way smaller for mathematics and physics.
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5.1.1 Modeling Approaches in neuronal dynamics:
Problem-Oriented Simulations

The most ambitious modeling approaches attempt to represent the different anatom-
ical levels in full structural and functional detail, the best known example pre-
sumably being the ’Blue Brain’ project (http://bluebrain.epfl.ch/). The goal of this
project is to develop a fully realistic model of the brain. Enormous efforts from
a large group of scientists have been invested over several years in order to col-
lect all the data necessary to implement such a model on a parallel supercomputer.
At the present, the model considers about 200 different types of neurons in the
somatosensory cortex, representing the neuronal network of a single neocortical
column. Other large-scale modeling efforts are connected with the ’in silicon hu-
man’ (http://www.siliconcell.net) and the ’physiome’ (http://physiome.jp/) projects.
These projects aim to bring together the actually existing,but widely distributed bi-
ological knowledge and modeling experience onto a common platform which will
allow us to connect the different levels from molecular kinetics to organ functioning
[63]. Such projects seem to be directly related with the steadily increasing informa-
tion exchange via the World Wide Net.

However, the question still remains as to what extent modelsof psychiatric dis-
order have to consider the whole spectrum of physiological processes down to the
molecular level. This reflects back on the problem we discussed in the first chapters
of this book about the purpose of a model. Do we aim for a model that can answer
all questions or would it be more rational to aim for a portfolio of models that each
can answer a specific set of questions?

Based on the so-called Neuron Field Theory, for instance, mathematical models
of functional interactions between different brain areas can successfully be imple-
mented without considering individual action potentials (spikes) and ion currents
[52]. (This approach will be discussed in more detail in Chapter 8). Interactions be-
tween different brain areas have also been modeled without considering any electri-
cal activity at all, simulating only alterations in the availability of neurotransmitters
[50]. Such approaches appear particularly suited in connection with psychiatric dis-
orders that are associated with imbalances among diverse transmitter systems, e.g.
with enhanced dopamine levels in schizophrenia [12].

In our point of view, it is not a question whether simplifications should be intro-
duced or not. The question is where and to what extent simplifications can be ac-
cepted, or even are necessary to achieve a better insight into the dynamics of essen-
tial mechanisms. Indeed, significant understanding of neuronal dynamics has been
gained from purely formal models of action potential generation [19, 51, 39, 22]. An
example of the use of this type of functional modeling to describe the dynamics of a
so-called tripartite system consisting of a pair of pre- andpost-synaptic neurons and
a glia cell will be discussed in Chapter 6. These examples demonstrate that there is
no rule to favor a particular modeling approach over others,but that the approach
must depend on the purpose of the study. The present chapter will demonstrate the
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Fig. 5.1 The vertical scale of different functional levels (A) and the horizontal scale of interacting
brain nuclei (B) in the examination of neurological and psychiatric disorders. The vertical scale
in A emphasizes the interdependencies among the different functional levels that need to be con-
sidered especially in brain-related disorders that are manifested at the behavioural level but most
likely originate from disturbances at the cellular and subcellular levels, which are also the main
targets for drugs. The horizontal scale in B is illustrated with a selection of brain areas that have
to be considered in the context with mental disorders and associated disturbances of autonomic
functions, e.g., sleep, emotions, and stress response. Theabbreviations are: LHA lateral hypotha-
lamic area; VLPO, SCN, and PVN respectively, are the ventrolateral preoptic, suprachiasmatic, and
paraventricular nuclei of the hypothalamus; MA and ACh are the monoaminergic and cholinergic
nuclei of the brainstem. The abbreviations in italic correspond to a variety of neurotransmitters and
hormones that are released by the above brain nuclei for information transmission.

use of a conductance-based approach to examine different physiological processes
in neurology and psychiatry.

5.2 Conductance-Based Modeling of Neural Dynamics

The conductance-based approach is used to implement modelsof neural systems at
the level of ion channels (Fig. 5.1). In the field of neurophysiology, such models
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are broadly applied for simulation of neurons and synapses.However, the approach
allows extensions both towards higher levels of the vertical scale in Fig. 5.1 and to
subcellular mechanisms such as second messenger function and gene expression.

In this way, different types of neuronal networks can be designed correspond-
ing to the specific brain areas and functions with physiologically appropriate con-
nections, as illustrated in an example of the horizontal scale in Fig. 5.1B. Similar
schemes could be drawn to illustrate horizontal interactions at other levels, not at
least for the interaction between different voltage- and transmitter-gated ion chan-
nels on which such conductance-based models are built up.

This theoretically describes the general strategy of addressing the challenge of
connecting different functional levels and scales. In practice, the realization of such
a concept with conductance-based models can easily lead to an overwhelming num-
ber of variables and parameters which makes it hard to understand the model’s dy-
namics, and sometimes even prevent elucidation of the physiologically and patho-
physiologically relevant features.

Our conductance-based models are simplified significantly compared, for exam-
ple, to the original and widely-used Hodgkin-Huxley approach [23]. However, by
contrast to other simplifications, e.g. the FitzHugh-Nagumo model [19], we have
specifically made sure that all model variables and parameters retain clear corre-
lations to physiological measures. Our goal is to achieve a physiologically based
model structure that allows simplifications and extensionsaccording to the specific
task.

In the following sections, we will first describe the physiological background
of neuronal excitability and synaptic transmission, and then introduce the general
model structure along with examples of how the model equations can be adjusted
according to different tasks. These include the elucidation of single neuron dynam-
ics and impulse pattern generation [8, 16, 45], examinationof neuronal synchroniza-
tion [49, 46] and noise effects [18, 17, 44, 26], and the physiologically appropriate
implementation of synapses, specifically designed for use in pharmacological and
clinical research [45]. Finally, the diverse approaches will be combined in a study of
synaptic plasticity in hypothalamic control of sleep-wakecycles with accompanying
alterations in thalamic synchronization states [47, 48].

5.2.1 Physiological Background: Basic Membrane Properties

The most relevant structure of information processing in the nervous system is the
neuronal membrane and more precisely, the functional proteins that are embedded
therein. This is where action potentials, i.e. the major carriers of information to other
neurons, are generated, and where the information from other cells is received.

Figure 5.2 illustrates the electrically relevant components. There are ion pumps
and ion exchangers (1) to maintain the functionally important concentration differ-
ences and to compensate for passive ions fluxes through a diversity of leaky ion
channels (2). The multitude of voltage-gated ion channels (3) is represented by two
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major types: one having a single gate for channel activationand a second one with an
additional gate for inactivation. Typical examples are thePotassium (K) and Sodium
(Na) channels for action potential generation.

Fig. 5.2 Physiologically relevant processes determining neuronalexcitability and synaptic trans-
mission (adapted from [45]). See text for further description.

Transmitter-gated ion channels (4) are combined with a binding site (receptor)
for the synaptic transmitter. The receptor can be an integral part of the channel pro-
tein directly interfering with its activation state (direct-gating). This is the ionotropic
type of synaptic transmission. Other receptors are remote from the ion channels, and
are co-localized with G-proteins, which initiate intracellular second messenger cas-
cades to control or modulate the ion channels’ state (indirect gating, metabotropic
type of transmission). The neurotransmitters are releasedfrom presynaptic vesicles
(6) into the synaptic cleft. This process is typically initiated by the arrival of an ac-
tion potential leading to opening of voltage-dependent Ca-channels. The transmitter
can control its own release via autoreceptors (7). It can be eliminated via diffusion
or degradation and is often actively re-uptaken into the presynaptic terminal. A sim-
pler, electrical, synapse is made up by gap-junctions between neighboring cells (5).

A diversity of neuromodulators and hormones, indicated by floating molecules,
intereferes with the membrane processes and/or modulates gene expression. Drug
application is symbolized by a pipette (9). All membrane proteins are subjected to
dynamic control of internalization and degradation or synthesis and embedding. The
following discussion specifically addresses generation ofimpulses by voltage-gated
ion channels and their synaptic control, including activity dependent modulation
and drug effects.
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5.2.2 Modeling Functional Membrane Properties

The principal concept of conductance-based models was developed in the mid-20th
century. It was particularly promoted by the work of Hodgkinand Huxley [23], who
combined experimental and modeling techniques to explain the appearance of action
potentials by voltage- and time-dependent alterations of ionic conductances. Let us
start with a short overview of the general idea of a conductance-based approach.

Fig. 5.3 A conductance-
based approach. A: The neu-
ronal membrane with voltage-
and transmitter-gated ion
channels. From left to right:
leak channel, voltage-gated
potassium and sodium chan-
nels, and transmitter-gated
channel. B: electrical equiva-
lent circuit corresponding to
the membrane and ion chan-
nels in A. Adapted from Fig.2
in [45]

Figure 5.3A presents the dynamically most relevant membrane structures to-
gether with their electrical equivalents in Fig. 5.3B. The membrane separates in-
tracellular and extracellular fluids with different ion concentrations which are kept
constant by ion pumps (not shown). Electrically, the lipid bilayer can be assumed to
be impermeable for ions but it constitutes a capacitorC of significant value (about
1µF/cm2). AlterationsdV/dt of the membrane potential over time are determined
by the sum of ion currents (∑ I ) that are charging the membrane capacitanceC:

C
dV
dt

= ∑ I (5.1)

The ion currents (I ) depend on the voltage (V) that drives the ions through the
membrane and the electrical resistance (R) which, in physiology, is given by its
inverse value, i.e. the electrical conductance, symbolized with a lower case letterg:

I =
V
R

= g ·V (5.2)

This equation is best known as Ohm’s law. However, in the caseof neuronal
membranes, specific features have to be considered regarding both the conductance
and the effective voltage. Physiologically, the actual conductancesgx of specific ion
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channels depend on the conductances of single channels (gx,single) and the number
of open channels (nx,open):

gx = nx,open·gx,single (5.3)

However, the number of open ion channels cannot be measured directly. It can be
estimated from the whole cell currents, if single channel recordings are also being
made. Hence, the relevant value, experimentally and in simulations, is the whole
cell conductance, conventionally given in relation to a maximum conductancegx,max

with a scaling factorax, reflecting the portion of opened channels:

gx = ax ·gx,max with 0≤ ax ≤ 1 (5.4)

Accordingly, equivalent circuits as in Fig. 5.3B do not consider single channels
but compound ion currents with all channels of a specific typerepresented by a
single conductance. While the leak conductance can be assumed constant for most
situations, those of voltage- and transmitter-gated channels can change and, there-
fore, are symbolized with sliders.

The equivalent circuit in Fig. 5.3B also contains batterieswhich do not have
direct counterparts in the membrane in Fig. 5.3A. These batteries account for the fact
that the voltage driving the ions through the channels is notequal to the membrane
potential. Different from technical systems, the reference value for zero current is
not the ground potential of 0 mV. Each type of ions has its own potential at which
the current is zero. Its value depends on the ion concentrations inside and outside
the cell. Due to these concentration differences a chemicalgradient drives the ions
in the direction of lower concentration, where they producean electrical field in the
opposite direction. The ion flow is zero when the electrical and chemical forces are
equal and of opposite direction:

z·F ·Vin/out = −R·T · ln
(

Cin

Cout

)

, (5.5)

whereVin/out is the membrane potential measured from the inside to the outside
of the cell,Cin andCout are the respective ion concentrations,T is the absolute
temperature,R is the gas constant,F is Faraday’s constant, andz is the valence of
the ion. Solving equation (5.5) forV, the equilibrium potentialVx = Vin/out for any
type of ionx can be calculated:

Vx = R· T
zF

· ln
(

Cout

Cin

)

(5.6)

This equation, derived by Walter Nernst already in 1888, is known as the Nernst
equation and the equilibrium potentials are called Nernst potentials. These potentials
appear in Fig. 5.3B as batteries.

Physiology introduces many complications, including those due to unspecific ion
channels. In this case, the voltage of zero current depends on the equilibrium poten-
tials of all the ions that can pass. Electrically, this can beconsidered as a parallel
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circuit with different equilibrium potentials (batteries) and conductances. The com-
mon equilibrium potential, i.e. the potential of zero net current flow, is given by

Vx =
gx1 ·Vx1 +gx2 ·Vx2 +gx3 ·Vx3 + ...

gx1 +gx2+gx3 + ...
, (5.7)

wherex refers to a specific type of ion channel, whilex1,x2,x3, ... represent
different ions that can pass with conductancegxi and are driven by equilibrium po-
tentialsVxi. In this general form, the potentialVx is called “reversal”, according to
observations in electrophysiological experiments that the direction of the ion current
is reversed at this point. Note that while the equilibrium potential refers to specific
ions and concentration differences, the reversal potential characterizes ion channels.

The reversal potential sets the reference value of zero volt. The effective voltage
which is driving the ions through a given type of channels, the so-called “driving
force” is given by the distance of the actual membrane potential V to the reversal
potentialVx. Ohm’s law, adjusted to ion currents, then has the form

Ix = ax ·gx · (V −Vx) (5.8)

For experimental reasons potentials and currents are conventionally given in
inside-out direction. In experiments the reference, or ground, electrode is placed
in the medium outside the cell while the recording electrodeis inserted.

5.2.3 Model Implementation: Simplifications and Extensions

Figure 5.3 illustrates the principle structure of a conductance-based model. In this
form it already includes several simplifications. First of all, ion concentrations do
not explicitly appear, but only the reversal potentials aregiven. Furthermore, differ-
ent ion channels with their conductances and reversal potentials may be combined
in one channel type. This is usually the case for the leak channels which all are rep-
resented by a single term. If required, the specific types of leak channels or changes
of ion concentrations can be included using Eq. (5.7) along with the Eq.(5.6).

Among the most fundamental structures in living systems areactive ion pumps
which are required to maintain concentration differences.Nevertheless, such pump
currents hardly appear in neuronal simulations. Occasionally, an electrogenic com-
ponent, e.g. of the Na-K pump, is introduced to simulate pumpinhibition by cooling
or pharmacological substances like heart glycosides [41].However, if required, the
conductance-based approach allows taking into account alterations of ion concen-
trations due to a possible imbalance of active pump and passive leak currents. It also
can consider that the activity of ion pumps, vice versa, depends on the ion concentra-
tions. In the simplest form, this can be introduced by an additional current term that
does not depend on the membrane potential or transmitters but on an imbalance be-
tween inward and outward currents. There are no limits to implement such interde-
pendences in greater detail, for example, with explicit terms for ion concentrations
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according to the Nernst equation and depending on more specific pump currents.
Altogether, although the model structure is simplified, it still reflects physiological
processes and allows implementing them in more detail whenever requested.

5.3 Neuronal Excitability

The interesting neuronal dynamics arise from ion channels that change their acti-
vation state depending on the membrane potential, synaptictransmitters, or other
signal substances. Most importantly, neurons can generateso-called action poten-
tials (APs). APs are transient changes of the membrane potential, going from a rest-
ing potential, which is near the K-equilibrium, towards theNa-equilibrium potential
and back. These types of cells are called “excitable”. In neurons, the APs are fast,
spike-like, deflections of the membrane potential.

The mechanisms of neuronal excitability can be looked at from different points of
view. In physiological terms we would say that excitabilityrequires “regenerative”
or “self-amplifying” processes. From an engineering perspective it can be said that
a positive feedback loop is involved. In terms of dynamic systems theory we would
say that in response to small disturbance excitable systemsshow a large deviation
from a stable state, which corresponds to a single AP. Despite the difference in ter-
minology all these descriptions of neuronal excitability refer to the same biological
phenomenon: the voltage- and time-dependent alterations of ionic conductances.

5.3.1 Voltage-Gated Currents and Action Potentials

In neurons, the regenerative process is constituted by opening of voltage-dependent
Na channels in response to depolarization which leads to further depolarization with
further opening of Na channels. This would continue until the Na equilibrium poten-
tial is reached, if it were not for the opposing effects that are activated almost simul-
taneously. Firstly, the regenerative process is self-limiting because the Na channels
go back to a closed state soon after opening; i.e., they become inactivated. Secondly,
with some delay, a negative feedback loop of voltage-dependent K channels is acti-
vated driving the membrane potential down towards the K equilibrium potential.

The functional properties of the two major types of ion channels that are respon-
sible for the generation of AP are illustrated in Fig. 5.4 together with the voltage-
and time-dependences of their opening and closing. The K channel on the left of
Fig. 5.4A represents the simplest type with only one gate (labeledn) which opens
on depolarization and closes on repolarisation. The Na channel also possesses such
a gate (m), but, there is also a second, the so-called inactivation gate (h), which does
just the opposite. It closes on depolarization and opens on repolarisation - luckily
with some time delay; otherwise the channel would never be open.
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Fig. 5.4 Dynamics of different types of voltage-gated ion channels.A: Ion channels with one and
two gates according to the voltage-dependentK+ andNa+ channels for action potential generation.
B: Opening and closing ofK+ andNa+ channels in response to a voltage step from−70 to−10 mV
(duration indicated by bars at the time axis). The upper traces demonstrate single channel currents
on repeated stimulation, and the lower traces show the compound current summed up over 200
recordings. Diagrams and data are from the “cLabs-Neuron” teaching software (www.cLabs.de).

The effects of depolarization on single channel currents are shown in Fig. 5.4B.
The upper diagrams show the effects of repeated applicationof depolarizing volt-
age steps and illustrate that opening and closing of ion channels are stochastic pro-
cesses. The single-gate K channel switches randomly between opened and closed
states. The double-gated Na channel also opens with random delay and duration.
However, this happens only once in response to a depolarizing potential step be-
cause the inactivation gate closes, and will only be opened again after repolarisation
with significant time-delay of several milliseconds. Theseare the ionic mechanisms
of the refractory period. No Na current will flow as long as theh gate is closed even
when a depolarizing stimulus opens them gate.
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Fig. 5.5 Ion currents and neuronal excitability. A: Virtual voltage-clamp experiments with a model
of neuronal excitability. Upper traces demonstrate voltage steps that are applied to the neuron,
and lower traces show the resulting ionic currents. Left: Transition from initial Na inward current
(downward deflection) to a K outward current in response to a voltage step from -70 to -10 mV.
Middle and right diagrams: recordings of isolated K and Na currents when the other current is
blocked by TTX or TEA, respectively. Different voltage steps have been applied, as shown in the
upper trace. B: Current-voltage (IV ) curves of K+ and Na+ channels obtained from recordings in
the middle and right diagrams in A. LinearIV -relations of constant maximum conductances are
indicated by dashed lines and the reversal potentials by arrows. The recordings have been made in
the virtual “Voltage- and Current-Clamp Lab” of “cLabs-Neuron” (www.cLabs.de).

Summing up, such single-channel currents generated due to repeated stimulation
(Fig. 5.4B, lower diagrams) gives the same curves as would beobtained with whole-
cell current recordings to which a manifold of single channels contribute simultane-
ously (Fig. 5.5A). Such whole-cell experiments need to be done in the voltage/patch-
clamp mode. The left diagram shows the overlapping of the fast but transient Na
inward with a sustained K outward current in response to a single voltage step. The
mid and right diagrams show recordings of isolated K- and Na-currents, respec-
tively, in response to a family of voltage steps from the resting membrane potential
to different “command” potentials - a typical experimentalprocedure.
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From the maximum currents of such recordings, current-voltage (IV ) curves can
be drawn (Fig. 5.5B). These curves have a linear range with constant conductance
(dashed lines) which is achieved when all channels are open.The slope gives the
maximum conductanceg = I/V. Deviations from these curves mean that not all ion
channels are opened. The relation between the actual current and the one expected
at maximum conductance is used to calculate the voltage-dependent activation state:

aV(V) =
I(V)

Imax(V)
=

g(V)

gmax
(5.9)

Typically, the values can be fitted by the Boltzmann function, reflecting a proba-
bilistic distribution of voltage-dependent opening of individual channels with high-
est transition probabilities around the half-activation potentialVh:

aV(V) =
1

1+exp(−s· (V −Vh))
(5.10)

The parameters is the slope at the half activation potential which determines
the broadness of the activation range. The functionally important time delays can
be determined from the time course of the current curves as shown in Fig. 5.5A.
Mostly, the curves can be fitted quite well by a single exponential function with
time constantτ and can be modeled by means of first order differential equation:

da
dt

=
aV −a

τ
(5.11)

Equations (5.10) and (5.11), accounting for voltage and time dependences of
ion channels’ activation, together with the membrane and current equations (5.1)
and (5.8) provide a general and complete set of equations forthe development of
conductance-based models of neuronal excitability and beyond.

The complete set of equations used to obtain the data in Figs 5.4 and 5.5 is shown
in Fig. 5.6. The membrane equation includes, apart from the leak current with con-
stant conductance, the Na and K currents for AP generation with voltage- and time-
dependent conductances. Ion currents are given by the product of conductance and
driving force. Voltage- and time-dependences of ionic conductances are addressed
by activation and inactivation variables (see Fig. 5.4). For AP generation it needs
to shift the membrane potential into a voltage range where a sufficient number of
Na channels can be opened in order to trigger the regenerative process of depolar-
ization and Na channels activation. All subsequent dynamics are determined by the
activation and inactivation processes of the ion channels involved.

5.3.2 Simplifications of the Original Hodgkin-Huxley Equations

The model equations in Fig. 5.6 are significantly simplified compared to the original
Hodgkin-Huxley approach [23] that still provides the basisfor most conductance-
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Fig. 5.6 A simplified conductance-based model of Hodgkin-Huxley type. A: the complete set
of equations. B: steady-state voltage dependences (left) and time dependences (right) of current
activation and inactivation.

based models, not only for neurons but also for other excitable cells as those of
the heart. To demonstrate the differences between the original and our simplified
approach we refer to an example in Chapter 12 in this book thatdescribes the mod-
eling of cardiac cells. This model is based on the ingenious work of Denis Noble
[40] who has adapted the Hodgkin-Huxley (HH) model of nerve excitation for sim-
ulation of the pacemaker activity of the heart cells.

The core of all conductance-based models is the membrane equation. Likewise,
the diverse ion currents are always calculated as the product of their driving force
and ionic conductance. The relevant dynamics are introduced by the voltage and
time dependences of the conductances, and exactly these arethe points in which the
implementations can significantly differ. To illustrate the most important differences
between the original and the simplified approach, we comparethe calculation of the
variablem for Na activation in Fig. 5.7.

In the original HH-equations, all activation variables aredetermined by expo-
nential rate constantsαm andβm such as those in equations A1 and A2 of Fig. 5.7,
also plotted in insert 1 with numerical values from Surovyatkina (this book). The
steady-state voltage-dependenciesmV (A3) as well as the activation time constants
τ (A4) are determined to calculate the activation variablem (A5). The exponen-
tial rate constants lead to a sigmoid steady state activation curvemV which appears
in the current equation as activation variablem (A6) with the power of 3, thereby
adjusted to an appropriate voltage range.
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Fig. 5.7 Simplification of the original Hodgkin-Huxley model, demonstrated by means of theNa
current activation variablem. A: Equations according to the original Hodgkin-Huxley approach.
B: the simplified equations. Inserts 1 and 2 compare voltage and time dependences of the original
and simplified model (see text).

Almost identical activation curves can be achieved with a single sigmoid function
m′

V (B1), as shown in insert 1 of Fig. 5.7 (curve form′
V coincides with that form3

V).
Such form of steady state activation is more appropriate forimplementation ofm′

in the current equation (B3) without the need for a power function. The voltage
dependence of the time constantτ, likewise introduced by the rate constants, is
plotted in insert 2 of Fig. 5.7. Althoughτ transiently goes up near the middle of the
voltage range (upper trace), the differences in the time-course ofm compared tom′

with a constant time delayτ ′ are discernible when plotted over a voltage step that
approximately covers the range of an action potential.

The activation variablem is often calculated directly from the time constants,
here shown in a form used in Chapter 12. Equations A3 and A4, which here are
shown specifically to indicate the physiologically relevant voltage and time depen-
dences, can therefore be skipped. However, the number of equations is not really the
problem. Major difficulties for the understanding and adjustment of the dynamics in
relation to physiological processes are introduced by the rate constants and power
function. What can easily be done with sigmoid activation functions, e.g. accounting
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for a shift of the activation range with appropriate adjustment of the half activation
voltageVh, is much more difficult to implement in the rate equations.

In order to understand the reasons for the implementation ofrate constants one
should remember the situation in the mid-20th century, and especially the chal-
lenge that Hodgkin, Huxley, Noble and others have undertaken. The idea to ex-
plain the observed dynamics by specific rate transitions hasappeared already at that
time. Remarkably, all the principle assumptions have been proven to be correct. The
ion channel gates, detected in experiments only 25 years later, still are denoted by
the lettersm, n, andh that Hodgkin and Huxley have introduced. These studies of
Hodgkin and Huxley described in their 1952 papers can be considered the most ex-
ceptional work in neurophysiology and biophysics in the 20th century. It was done
in a combination of electrophysiological experiments and computer modeling stud-
ies.

In actual neurophysiology, the focus is not primarily laid on the shape of an AP,
although it can still be of interest in case of heart cells. Otherwise, APs are mostly
considered in context with the modulation of neuronal firingrates and patterns. Such
effects are introduced via the alterations of ionic conductances which are easier to
handle with the simplified description. The applied variables and parameters can
directly be related to experimental data. From this point ofview, the above described
simplifications may be considered as adjustments to experimental reality.

A Two-Dimensional Conductance-Based Model of Spike Generation

Real simplifications, including dimension reduction, are implemented with the next
steps that eliminate three equations of the already simplified model, two of which
are differential (Fig. 5.8). This is achieved by considering activation of Na channels
as instantaneous, i.e. without time delays, and neglectingNa channel inactivation.

Neglecting the time delays of Na channel activation is justified because these
channels open much faster than any others. Inactivation of Na channels needs to
be considered in specific simulations as, for example, voltage-clamp experiments,
where it determines the typical time-course of the Na current. In the unclamped,
free-running mode of action potentials generation Na channels will anyhow close
in the course of K-induced repolarisation. Hence, as long asthere is no need to
examine some specific phenomena, e.g. in context with a refractory period, the two
dimensional model of action potential generation can be used also for extensions in
other directions, as described in section 5.5.

A Mathematical Approach: the Two-Dimensional FitzHugh-Nagumo Model

The complicated structure of the original HH equations withfour dimensions has
challenged many scientists, mostly biophysicists and biochemists, to develop a di-
mension reduced version of neuronal excitability, especially for explicit analytical
examination and easier visualization of the state space dynamics. The most widely
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Fig. 5.8 Reduction of an already simplified four-dimensional Hodgkin-Huxley type model (left)
to a two- dimensional version (right). Inactivation ofNa-currents (h) is neglected, which makes
the calculation of its voltage- and time-dependences dispensable. ConsideringNa activation as
instantaneous eliminates a second differential equation.See text for detail.

used model, which has become a prototype of an excitable neuronal system, was
developed by FitzHugh in 1961. This is a two-dimensional system following the
equations shown below (see also Postnov et al., this book).

τv ·
dv
dt

= v−a ·v3−b ·w+ I (5.12)

τw · dw
dt

= v−c ·w (5.13)

All dynamics are directly related to the main variablev which represents the
membrane voltage. Excitation is introduced by a positive feedback from the voltage
itself (v), counteracted by a negative feedback loop due to (−a·v3) and a “recovery”
variable (w) which is activated by the voltage (v) with a slower time constant (τw),
including a relaxation term (c ·w). A perturbation introduced by the termI can give
rise to a spike-like deflection, and a series of spikes can be induced with a firing
rate dependent on the strength ofI . Moreover, some typical phenomena of neuronal
excitability can be observed, e.g. “depolarization block”or “accommodation”.

Dimension reduction from a system theoretical point of view, like the FitzHugh-
Nagumo and similar models, can be advantageous for systems analysis but intro-
duces serious limitations when experimentally and clinically relevant mechanisms
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need to be examined. For example, electrophysiological experiments are often per-
formed under application of specific ion channel’s agonistsand antagonists. Also
pharmacological treatments of neurological and psychiatric disorders are often in-
terfering with ionic conductances. Under these conditions, conductance-based mod-
els have clear advantages. They also can be simplified and reduced in dimensions as
shown above. Moreover, if required, physiologically appropriate extensions can be
made as we show below.

5.4 Ion Channels and Impulse Patterns

An enormous variety of ion channels can be involved in the control of neuronal ex-
citability. Often, specific functions of a cell are closely related to the expression of
specific types of ion channels. In the following we give an example of the develop-
ment of a single neuron pattern generator which elucidates interesting characteris-
tics that may be of functional relevance for several aspectsof neuronal information
processing, e.g. sensory information transmission and neuronal synchronization.

The model was originally developed for the simulation of peripheral cold recep-
tor discharges [7]. Cold receptors show the greatest variety of impulse patterns that
have been observed in recordings from individual neurons [5]. These include dif-
ferent types of single spike-discharges (tonic firing), impulse groups (bursts), and
chaotic pattern [6]. These impulse patterns seem to arise from the interaction be-
tween spike generation and subthreshold membrane potential oscillations [8]. Such
mechanisms and patterns can not be simulated with a two-dimensional conductance-
based model, but requires model extensions.

As experiments suggested the existence of subthreshold oscillations operating
independently from spike-generation [5, 54], we have extended the two-dimensional
model in Fig. 5.8 by two slow, subthreshold currentsIds andIrs:

C · dV
dt

= ∑ IM = Il + Id + Ir + Ids+ Irs (5.14)

To underline that this is a generic approach we denote all voltage dependent
currents in terms of depolarizing (d) and repolarising (r), with the additional suffix
(s) for the slow, subthreshold currents. “Subthreshold” means that these currents are
activated below the “threshold” of spike generation, while“slow” refers to the fact
that these currents are activated much slower than the spike-generating currents.

We have implemented and used this model in different ways. Inits simplest form
it is entirely composed of voltage-dependent currents according to the equations in
Fig. 5.7B. For slow subthreshold currents the range of voltage-dependent activation
is shifted to more negative potentials (subthreshold) and they are activating with sig-
nificantly larger time constants (slow). Such model simulates the encoding proper-
ties of shark electroreceptors and accounts for neuromodulatory properties of brain
cells [24]. For the simulation of cold receptor discharges,we had to consider the out-
comes of electrophysiological experiments with Ca-channel blockers and changed
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Ca-concentrations which indicated significant contribution of Ca-dependent K con-
ductances to impulse pattern generation [55].

Such mechanisms have originally been implemented in all detail with voltage-
dependent Ca-currents, alterations of intracellular Ca concentration, and the thereby
activated K currents [25]. Later, significant simplifications have been introduced.
Activationasr of the slow repolarising K current has been directly connected to the
slow depolarizing currentIsd with a coupling factorη , time constantτsr, andk as a
scaling factor of the relaxation term

dasr

dt
=

η · Isd−k ·asr

τsr
(5.15)

Temperature dependences have been implemented, accordingto experimental
data, with scaling factors 3.0 and 1.3 per 10◦C for all activation time constants and
maximum conductances, respectively (see [7, 8] for detailsand parameter values).

Additionally, noise has been introduced because a specific type of patterns can-
not be explained without stochastic components [9, 7, 8]. Wehave implemented
conventional Gaussian white noise in different ways: as current and as conductance
noise. The most widely used implementation is additive current noise:

C · dV
dt

= ∑ IM + INoise (5.16)

Such current noise is assumed to comprise all kinds of randominfluences, irre-
spective of their origin. It is an appropriate implementation of synaptic noise and
may also reflect environmental fluctuations, e.g., of different neuromodulatory sub-
stances. As major noise effects, especially in isolated neurons, may arise from the
stochastic opening and closing of ion channels, we have alsointroduced conduc-
tance noise by adding the noise term to the ion channel activation kinetics

da
dt

=
aV −a

τ
+aNoise (5.17)

or, with most dramatic effects, to the Ca-dynamics (according to equation (5.15))

dasr

dt
=

η · Isd−k ·asr

τsr
+aNoise (5.18)

The outcomes of the model are shown in Fig. 5.9A by plots of interspike intervals
(ISI), which are the time intervals between successive spikes. Figure 5.9B shows
examples of voltage traces (for details see [18, 44]). The deterministic bifurcation
structure in the upper diagram of Fig. 5.9A demonstrates transitions from tonic-
firing via chaos to burst discharges and again to tonic firing.In noisy simulations,
shown in lower diagrams, these transitions are smeared out.At high temperatures a
particular type of pattern appears which does not exist in deterministic simulations.
This has been analyzed in detail and is comparably easy to understand [9, 24, 16,
17].

Here, we specifically emphasize the noise effects in the lower temperature range
where deterministic simulations exhibit a pacemaker-liketonic firing. Especially
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Fig. 5.9 Impulse patterns and
effects of current and con-
ductance noise in a model
neuron with subthreshold os-
cillations. A: Bifurcation dia-
grams of interspike-intervals
(ISI) obtained by temperature
tuning for the deterministic
case (upper diagram), with
current noise (mid-diagram),
and conductance noise (lower
diagram). B: Examples of
voltage traces and impulse
patterns at 5 and 25◦C of
the simulations in A. The
values of D give the intensity
of Gaussian white noise. The
data were presented in an
other form in [18, 44]

B

A

C0Temperature

with application of conductance noise the bursting activity seems to continue far into
the deterministically tonic firing regime, but with a more irregular pattern. Examples
of voltage traces in Fig. 5.9B additionally underline the noise effects in the tonic
firing regime (5◦C) in comparison with bursting (25◦C) where current as well as
conductance noise mainly introduce some randomness in impulse generation.

These simulation data suggest that the transitions from pacemaker-like tonic fir-
ing to burst discharges via period doubling bifurcation, including a broad range of
chaos, are endowed with particularly complex dynamics. These particular dynam-
ics, although not yet fully understood, seem to have significant impact on neuronal
synchronization as we illustrate in the next section.
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5.5 Gap Junction Coupling and Neuronal Synchronization

Alterations of impulse patterns can be observed not only in recordings from periph-
eral sensory receptors but also in many neurons in the central nervous system (CNS).
Especially the transitions from tonic firing to burst discharges were shown to play
a major role in diverse functions, mostly in context with neuronal synchronization.
The best known example is synchronization of thalamic and cortical neurons at the
transition from wakefulness to sleep which goes along with alterations of neuronal
impulse pattern from tonic firing to bursting [32, 35]. Similar interdependences have
been suggested to underlie information binding in the visual cortex where synchro-
nization even among distant neurons was observed in parallel with the occurrence of
burst discharges [57]. Synchronized neuronal discharges in Parkinson’s disease and
epilepsy also seem to be associated with transitions to bursting behavior [29, 38]. It
is still not clear whether burst activity appears due to neuronal synchronization or
neuronal synchronization is a consequence of tonic to bursting transitions.

In order to study synchronization properties at tonic-bursting transition we have
used a basic approach of only two neurons connected via gap-junctions (electrotonic
or diffusive coupling, for details see [49, 46]). Instead oftemperature scaling as in
Fig. 5.9 we have used an external current as control parameter which may reflect a
compound synaptic input and leads to similar bifurcations (for comparison see Fig. 4
in [44]). Fig. 5.10B shows the transitions from pacemaker-like tonic firing via chaos
to bursting that apparently are of particular interest for neuronal synchronization.

Fig. 5.10 Synchronization
properties of the gap-junction
coupled model neurons. A:
Minimal coupling strength
ggap required for in-phase
synchronization of identical
neurons with impulse pattern
according to B. Bifurcation
diagram of interspike intervals
(ISI) obtained by external
current injectionIext.

Gap-junction coupling means that individual neurons receive additional currents
Igap from their neighboring neurons which depend on the actual potential difference
(Vi −Vj) and the conductance of the gap-junctionsggap.

Igap,i = ggap· (Vi −Vj) with i, j = 1,2 (in case of only two neurons) (5.19)

In deterministic simulations, when the two model neurons operate in identical
periodic states, they are expected to synchronize even withextremely low coupling
strengths, irrespective of their initial conditions. Indeed, this is the case in the burst-
ing regime but, surprisingly, not in the likewise periodic tonic-firing regime. There,
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as shown in Fig. 5.10A, the coupling strengths which are needed for in-phase syn-
chronization are even higher than in most ranges of the chaotic regime.

In addition to the above described noise effects, these synchronization data pro-
vide further indications that this kind of tonic-firing activity is governed by more
complex dynamics than could be expected from a simple pacemaker neuron. Indeed,
this tonic activity would not exist without the subthreshold currents, even though the
oscillations can no longer be recognized [8]. We will returnto the issue in context
with a model of hypothalamic control of thalamic synchronization along sleep-wake
cycles. This model also includes chemical synapses which are described next.

5.6 Chemical Synapses - the Main Targets of Drugs

The most relevant contacts for specific information transmission, especially over
long distances and for communication among brain areas, aremade via chemical
synapses. In contrast to the electrical synapses, information transmission via chem-
ical synapses is unidirectional. The type of information transmission transiently
changes from electrical to chemical. The electrical activity in the presynaptic termi-
nal, mostly in form of action potentials, induces the release of chemical transmitters
(also called neurotransmitters) which are modulating the electrical activity of the
postsynaptic neuron. This process goes through a number of steps, providing targets
for other chemicals, especially drugs. Likewise, many brain disorders are likely to
originate from disturbances of chemical information transmission.

Multiple neurotransmitters are present in the brain. Some of them are ubiquitous,
like glutamate or gamma-amino-butyric-acid (GABA) which are the major exci-
tatory and inhibitory transmitters. Others, like serotonin, are released by specific,
often small brain nuclei, but are involved in the control of amultitude of functions.
The cause of neurological and psychiatric diseases is oftenassumed in an imbalance
of diverse transmitter systems, and is modeled accordingly[50, 42]. Most drugs for
the treatment of these disorders also interfere with synaptic transmission.

Together with these classical neurotransmitters neurons often release the so-
called co-transmitters, which typically are neuropeptides. During recent years a
great number of such co-transmitters have been identified, and it can be expected
that many more will follow. Action of such co-transmitters is usually not easy to
detect in electrophysiological experiments, because theymostly exert neuromodu-
latory effects and, compared to classical transmitters, donot induce strong potential
deflections. Nevertheless, these co-released neuropeptides are involved in a multi-
tude of physiological actions and are becoming increasingly popular for drug devel-
opment. Activity and effects of such a neuropeptide, i.e. orexin which is required
for sustained wakefulness, will be considered in more detail in section 5.8.
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5.6.1 A Conductance-Based Model of Synaptic Transmission

In the following a modeling approach is described that does not aim to simulate
a specific synapse but should reflect general mechanisms of synaptic transmission.
We particularly emphasize the model structure that allows easy adjustments and
extensions if specific functions or mechanisms need to be examined in detail.

Fig. 5.11 The conductance-based model of synaptic transmission. Equations are given in the left
box, together with illustrations of the variables time-course. Main control parameters and their
physiological/pharmacological functions are indicated in the box on the right (modified and ex-
tended from Fig. 4 in [45].

Figure 5.11 illustrates the different steps of synaptic transmission and their im-
plementation in the model (for details see [45]). The sequence of synaptic transmis-
sion starts with the presynaptic spike (Fig. 5.11A). Release of a neurotransmitter
is initiated via the activation of voltage-dependent Ca channels in the membrane
of the presynaptic terminal. The increasing concentrationof calcium in the termi-
nal activates a sequence of events that leads to the fusion oftransmitter-containing
vesicles with the presynaptic membrane and subsequent release of transmitter into
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the cleft. These mechanisms are not implemented in detail. The steep sigmoid acti-
vation function, which is shown with dashed line in Fig. 5.11A, limits the time of
transmitter release to the duration of the presynaptic action potential. It is calculated
according to equation given in Fig. 5.11B forssyn= 1, Vtr = −30mV. The amount
of transmitter being released is adjusted by the scaling factor cspike.

The time delays of transmitter release, including accumulation and elimination of
calcium in the presynaptic terminal, as well as vesicle fusion, are very short. There-
fore, they can be comprised in the time delays of transmitteraccumulation (τaccum)
and elimination (τelim) in equation in Fig. 5.11C, which calculates the time course
of transmitter concentration in the cleft. Transmitter elimination is implemented in
form of a first order relaxation. This process is the slowest when the transmitters are
eliminated only by passive diffusion, but can be accelerated by active processes like
degradation and/or reuptake of the transmitter to the presynaptic terminal.

Activation of postsynaptic receptorspr depends on the transmitter concentration
in the cleft and on the availability of the receptors on the postsynaptic membrane.
This can be modeled in a form of Michaelis-Menten kinetics, as shown in the inset
in Fig. 5.11C. The parametercr in Fig. 5.11C is the transmitter concentration at
which half of the receptors are occupied. Accordingly, thisparameter reflects the
transmitter’s affinity. The value ofrpost scales the maximum activation which is
reached when all receptors are occupied, thereby representing also the availability of
receptors. With a single presynaptic spike the transmitterconcentrationpr remains
far below saturation and its time course is almost the same asof ccle f t.

In case of ionotropic receptors, which are an integral part of the ion channels,
receptor activation leads to immediate current activationwithout discernible time
delay (ar = pr in Fig. 5.11E). The differential equation in Fig. 5.11E is especially
introduced to account for the multitude of G-protein coupled, i.e. metabotropic, re-
ceptors where the ion channels are remote from the transmitters’ binding sites. In
this case, ion channel activation and inactivation goes through a diversity of steps.
All additional time delays are comprised in time constants of receptors’ activation
τact and inactivationτinact. The time delays of metabotropic receptors’ activation
and inactivation are much longer than those of ionotropic, as shown in Fig. 5.11E.

Activation of postsynaptic ion channels induces postsynaptic currents which fol-
low the same rules as the voltage-gated ones (see equation inFig. 5.11F). Finally,
in the membrane equation in Fig. 5.11E the synaptic currentIpost,r is added to the
voltage-dependent currentsIpost,v leading to the appearance of postsynaptic poten-
tials (PSPs) in the voltage traceVpost. Additional time delays in the voltage com-
pared to the currents are introduced by the membrane capacitanceCpost.

Whether a depolarizing or hyperpolarising postsynaptic current is induced, i.e.
whether the synapse is excitatory or inhibitory, depends onthe type of postsynaptic
ion channels, more precisely, on the conductivities and equilibrium potentials of the
ions that can pass (see section 5.3). The type of ion channelsthat are being opened or
closed, in turn, depends on the receptors to which the transmitters bind. Moreover,
for the same neurotransmitter, different types of receptors exist, e.g., glutamate-
activated AMPA and NMDA receptors. Also, different second messenger pathways
can be activated, sometimes even with opposite effects as, for example, via D1 and
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D2 dopamine receptors. The multitude of receptors and ion channels provides many
targets for pharmaceutical interference with synaptic transmission.

5.6.2 Modeling Synaptic Plasticity and Drug Effects

Compared to physiological reality the presented model is extremely simplified and
could be further simplified depending on the task. In this form, it includes major
parameters for the simulation of synaptic plasticity, synaptic disturbances, and drug
effects. Key functions of specific parameters are listed in the text box of Fig. 5.11.

Transmitter Release:
Presynaptic Inhibition, Autoreceptors, Depletion, and Plasticity

Starting at the presynaptic terminal, the first physiologically relevant value for reg-
ulation of synaptic transmission is the amount of transmitter being released. The
model, even in this simplified form, provides a number of parameters and vari-
ables to distinguish between different effects. Among themis the amplitude of the
presynaptic action potential, manifested inVpre which can change depending on the
presynaptic activity. Physiologically, it is systematically modified via presynaptic
inhibition which uses pre-depolarisation for gradual Na-channel inactivation. In the
actual model version, such effects would be achieved with addition of an external,
pre-depolarizing current to the presynaptic membrane equation.

Another type of presynaptic inhibition acts via the reduction of presynaptic Ca-
inflow. This can be modeled with elevation of the thresholdVtr or, in a simpler way,
with reduction ofcspike, which are both shown in Fig. 5.11B. The scaling parameter
cspike can also be used to account for presynaptic plasticity or alterations of presy-
naptic transmitter availability, e.g. on application of monoamino-oxidase (MAO)
inhibitors. An important physiological feedback loop for the control of neurotrans-
mitter release is activated via autoreceptors in the presynaptic membrane, as shown
in Fig. 5.2. This can be simulated, in a simplified form, with scaling cspike as a
function of the transmitter concentration in the synaptic cleft cle f t.

Transmitter Concentration: Degradation and Re-uptake Inhibitors

The transmitter concentration in the synaptic cleft (ccle f t in Fig. 5.11C) is a key vari-
able of synaptic transmission determining the activation of postsynaptic receptors.
The relevant control parameter is the time constant of transmitter eliminationτelim

which accounts for diffusion, degradation, and re-uptake.The active processes of
degradation and re-uptake are targets of drugs in a multitude of diseases. A good
example is treatment of a muscle disease, Myasthenia gravis, with inhibition of
acetylcholine degradation [15].
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At most synapses, the transmitters are not only degraded butalso re-uptaken
from the synaptic cleft back into the presynaptic terminal to be recycled for further
transmitter release. This is done by specific transport proteins (see Fig. 5.2), which
are again targets of drugs for the treatment of various diseases. For example, specific
serotonin re-uptake inhibitors (SSRIs) are among the most widely used drugs in ma-
jor depression [64]. The primary effect is the strengthening of synaptic transmission
due to prolonged presence of the transmitters in the cleft. However, also side-effects
have to be considered, e.g. stronger activation of autoreceptors and reduced trans-
mitter release. At the postsynaptic site, prolonged occupation of the receptors can
lead to their removal from the membrane, i.e. internalization or down-regulation.

Direct drug effects on transmitter degradation or re-uptake can be implemented
in the model with adjustment of the time constant of transmitter elimination (τelim,
Fig. 5.11C). An example of how a pathologically reduced number of receptors can
be compensated by re-uptake inhibition is given in [45]. Secondary effects on au-
toreceptors can be mimicked as described above. For down-regulation of postsynap-
tic receptors,rpost needs to be scaled as a function of receptor activationpr .

Postsynaptic Receptors: Agonists and Antagonists, Up- andDown-Regulation

Postsynaptic receptors, the binding sites of neurotransmitters, are targets for a mul-
titude of drugs acting as receptor agonists or antagonists.The action of receptor
agonists can be considered in the model with a correspondingconcentration term
added toccle f t, also with implementation of specific pharmacodynamics. Compet-
itive receptor antagonists will lead to a concentration- and affinity-dependent shift
of the Michaelis-Menten curve to the right (Fig. 5.11D) which can be introduced
by increasingcr . In contrast, non-competitive antagonists do not occupy the bind-
ing sites but prevent receptors’ activation by prohibitingthe necessary conforma-
tional changes. Accordingly, their action needs to be considered in a different way;
i.e., by a reduction ofrpost corresponding to the reduced number of receptors that
can be activated. The parameterrpost can be connected to other physiological and
pathophysiological processes, e.g., the above mentioned effects of antagonists and
receptor up- and down-regulation.

Second Messenger Systems / Postsynaptic Currents and Potentials

The diversity of second messenger systems is beyond the scope of this chapter.
However, adjustment of activation and inactivation time constants (τact andτinact) in
Fig. 5.11E allows considering alterations of these processes in general form. In case
that more detailed simulations need to be implemented, these parameters provide an
interface connecting them with the actual model.

For the next steps, from ion channels activation to postsynaptic currents and po-
tentials, the same rules apply as for neuronal excitabilityin general (see section 5.4).
The relevant control parameters are the maximum conductance gr and the reversal
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potentialVr of the ligand-gated ion channels. Additional effects can beintroduced
via alterations of the membrane potential of the postsynaptic neuron due to inter-
nal dynamics and synaptic inputs also from other sources. Short but strong effects
appear during action potential generation. An example is given in [44]. Alterations
of the driving force can also be induced via the reversal potentialVr as the result of
changed ion concentrations and calculated by the Nernst equation (Eq. 5.6).

Scaling the maximum conductancegr allows to consider alterations of the num-
ber of ion channels which can be activated, for example, due to facilitation of
NMDA receptor activation and increased conductivity of AMPA receptors in the
early and late phase of synaptic plasticity. Furthermore,gr is a major parameter for
implementation of pharmacologically important effects ofion channel blockers.

5.7 Applications:
Neurons and Synapses in a Model of Sleep-Wake Regulation

The previous sections have illustrated how neuronal excitability and synaptic trans-
mission can be simulated with a simplified yet flexible conductance-based approach.
Let us conclude this chapter by presenting an example of a model system that com-
bines the diverse aforementioned parts for the developmentof a physiology-based
model of sleep-wake regulation. Sleep-wake regulation is agood example showing
the challenge introduced by interdependences of physiological processes along the
vertical and horizontal scales (see Fig. 5.1).

5.7.1 Sleep-Wake Control: Mechanisms and Models

Several brain nuclei change their activity along the transitions between sleep and
wakefulness. These include diverse nuclei in the hypothalamus, brainstem, and the
thalamocortical circuit which are all connected to each other creating a complicated
system of interdependences as shown in Fig. 5.1B (for reviewsee [53]).

In the hypothalamus, there are at least three nuclei that play a major role in sleep-
wake regulation. These are the suprachiasmatic nucleus (SCN), the ventrolateral
preoptic hypothalamus (VLPO), and the lateral hypothalamic area (LHA). Neurons
in the SCN constitute a master circadian clock which is entrained by the light-
dark cycle. By contrast, activity of the VLPO and LHA neuronsis state-dependent.
VLPO neurons are silent during wakefulness and firing duringsleep [56]. Just the
opposite is seen in a subpopulation of LHA neurons co-releasing orexin and gluta-
mate. These are silent during sleep but firing during wakefulness [27, 36].

The sleep-wake centers in the hypothalamus are connected todiverse monoamin-
ergic and cholinergic nuclei in the brainstem. These nucleiare involved in the regu-
lation of ultradian rhythms during sleep [33], and provide projections to other brain
areas such as the thalamus.
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Thalamic neurons, in feedback loops with cortical neurons,show significant
changes of impulse patterns and synchronization at sleep-wake transitions [35]. In
the wake state, thalamic neurons exhibit unsynchronized tonic firing activity, while
they change to synchronized burst discharges during sleep.In this way, the thala-
mus opens and closes the gate for sensory information transmission to the cortex for
conscious perception (e.g. [3]). When the external input isreduced, populations of
cortical neurons tend to synchronize as indicated by the appearance of slow wave
potentials in the electroencephalogram (EEG) [1, 34].

Different approaches for simulation of sleep-wake transitions can be found in
the current literature. Irrespective of how detailed they are, all refer to the generally
accepted two-process concept [4] which suggests that sleep-wake transitions are de-
termined by the interaction between a circadian and a homeostatic process. The cir-
cadian process can be related to the genetic clock in the SCN [28]. The homeostatic
mechanisms are usually attributed to the accumulation and degradation of somno-
gens, like adenosine, as considered, for example, in the neural field models [43]. A
completely different concept proposes sleep-wake dependent synaptic plasticity as
a homeostatic mechanism underlying cortical synchronization [61].

Our focus is laid on the recently discovered substance orexin (OX) which is a
co-transmitter of only several thousands of neurons in the lateral hypothalamus [59,
62]. Despite their small number, these neurons influence almost the entire brain
with densest projections to the brainstem and thalamocortical circuits. It was shown
that lack of orexin neurons or reduced availability of orexin itself as well as of its
postsynaptic receptors leads to narcolepsy which is characterised by unpredictable
transitions between wakefulness and sleep [31, 13].

Assuming that alterations of orexin levels are also controlling natural sleep-wake
transitions, we have developed a novel concept of homeostatic sleep-wake regula-
tion [47]. This concept has been transferred into a conductance-based model repre-
senting dynamics of neurons and synapses with activity-dependent decline of orexin
effects during wakefulness and recovery during sleep. Implementing the experimen-
tally well demonstrated projections from orexin neurons tothe thalamus and mod-
eling thalamic neurons as single neuron pattern generators, as in section 5.6, we
have demonstrated alterations of thalamic synchronization states developing form
changed orexin input. A brief preliminary report of this work has appeared in [48].

5.7.2 Modeling Hypothalamic Control of Thalamic
Synchronization

For these simulations we need to connect neuronal populations of different brain
areas. Nevertheless, we have continued with the conductance-based modeling ap-
proach, but with significant simplifications in other respect. The different neuronal
populations are represented by single neurons connected via single synapses (Fig.
5.12A). This reduced modeling concept was chosen not for shortening the simula-
tion time, which is often the main objection against conductance-based models. It
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was chosen because our goal was to specifically examine the dynamics of synaptic
plasticity in context with neuronal excitability. Averaged values from a large number
of neurons or neuronal populations would complicate the study or may even prevent
the elucidation of the physiological mechanisms at the cellular level.

Fig. 5.12 A model of hypothalamic sleep-wake regulation controllingthalamic synchronization.
A: Structure of the sleep-wake model consisting of a reciprocal excitatory circuit in the lateral
hypothalamus with synaptic connections between an orexin (OX) and a local glutamate (GLU)
neurons. The OX neuron receives circadian input from the suprachiasmatic nucleus (SCN) and
sends synaptic projections to two gap-junction coupled thalamic neurons (TH). B: (a) Sleep-wake
transitions along 24 h days and corresponding alterations of relevant model parameters on a 24 s
time scale showing (b) voltage traces of a TH neuron with transitions from tonic firing to bursting,
(c) the activation variable of synaptic orexin release, (d)transitions from silent to firing states of
the OX neuron, and (e) the circadian input. C: Voltage tracesof (a) synchronized bursting and (b)
asynchronous tonic firing of the two thalamic neurons from the above simulations plotted on an
enhanced time scale. Modified and merged from [47, 48].

In the core of the model, shown in Fig. 5.12A, there is a reciprocal excitatory
circuit which is built up of an orexin neuron and a glutamate interneuron [30]. The
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orexin neuron, which is a glutamate neuron with orexin as a co-transmitter, receives
additional input from the circadian pacemaker in the form ofa gradually changing
current, corresponding to compound synaptic input from theSCN. Simulation of
thalamic synchronization requires a minimum of two neurons. This simple network
comprises all of the components of our conductance-based modeling approach:

1. Hypothalamic neurons are realized with the simplest version of a two-dimensional
HH-type model - as described in section 5.4.

2. Thalamic neurons additionally include subthreshold currents allowing transi-
tions between different types of impulse patterns - as illustrated in section 5.5.

3. Connections between the two thalamic neurons are made by gap-junctions with
alterations of the synchronization state depending on the activity pattern - as
shown in section 5.6.

4. Hypothalamic neurons make connections via chemical synapses which allow
accounting for activity-dependent synaptic plasticity - as mentioned in section
5.7.

The dynamically relevant mechanisms of homeostatic sleep control are imple-
mented via activity-dependent alterations of orexin effects. Firing of orexin neu-
rons during wakefulness is only sustained by reciprocal excitatory connections,
among others, with local glutamate interneurons [30]. The depolarizing effect of
the co-transmitter orexin is obviously essential to keep them in an excitable state.
To account for the transition to a silent sleep state, we haveproposed an activity-
dependent change of the synaptic efficacy of orexin, i.e., its reduction due to the
firing of orexin neurons. This leads to an increasing sleep drive, similar to the en-
hanced tendency to falling asleep with lack of orexin in narcolepsy.

In the original model, the synapses have been implemented with additional sim-
plifications compared to the model in Fig. 5.11, e.g., relating current activation di-
rectly to the transmitter concentration and distinguishing metabotropic orexin ef-
fects from ionotropic glutamate effects by longer time delays of activation and in-
activation (for details see [47]). For consistency, we refer to the equations of Fig.
5.11 in the description of the state-dependent alterationsof orexin effects, which
have been introduced by a modulation functionM scaling postsynaptic receptor and
current activation, respectively:

dar

dt
=

M · pr

τact
− ar

τinact
with 0≤ M ≤ 1 (5.20)

dM
dt

=
M · pr

τdec
+

Mmax−M
τinc

(5.21)

Alteration of M can reflect up- and down-regulation of postsynaptic receptors.
Down-regulation, the first term in Eq. (5.20), depends on receptor occupation and is
directly related to presynaptic firing and transmitter release. Up-regulation is imple-
mented as an ongoing process of receptor re-embedding towards a maximum value
Mmax. In a similar way, activity-dependent depletion of presynaptic transmitter avail-
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ability and its re-synthesis can be considered, with the time constantsτdec andτinc

determining the time scale on whichM is decreasing and increasing, respectively.
To save computational time, most simulations as those in Fig. 5.12B and C were

run with circadian cycle periods of 24 seconds instead of 24 hours. The homeostatic
mechanisms can easily be scaled up to 24 hours multiplying the time constantsτdec

andτinc by a factor of 3600 (seconds/hour) as demonstrated in the original paper
[47]. None of all the other parameters needs to be changed and, importantly, neu-
ronal spike generation and synaptic transmission retain their realistic time-course.

The circadian inputIcirc to the orexin neuron is modeled in form of the skewed
sine function (Fig. 5.12Be) as proposed in [14]. At a certaininput strength, the
orexin neuron is activated. When the orexin neuron has reached a certain firing rate,
it activates the glutamate interneuron - provided sufficiently strong contribution of
the co-transmitter orexin. When this state is reached, firing in both neurons sustains
due to their reciprocal excitation (Fig. 5.12Bd, illustrated by voltage trace of the
orexin neuron,Vox). The neurons continue to fire also when the circadian input de-
creases below the level of spike initiation or even without any input. When firing in
the reciprocal circuit is established, it will only be interrupted by the impairment of
synaptic transmission due to activity-dependent reduction of synaptic orexin effects
as described above. When the postsynaptic efficacyaox (Fig. 5.12Bc) is going be-
low a certain value, the orexin neuron cannot longer activate the glutamate neuron.
The reciprocal excitation is interrupted, and firing stops.At this point, also the input
from orexin neurons to the thalamic neurons is interrupted.

Thalamic neurons are modeled as pattern generators, like those in section 5.5,
with synchronization properties, which are described in section 5.6. The excitatory
synaptic input from the orexin neuron during wake keeps the thalamic neurons in
a depolarized state with tonic firing activity which is only slightly changed by the
decreasing activation variable. Absence of this depolarizing input during the silent
state of the orexin neuron does not completely stops the firing of the thalamic neu-
rons as in the case with the local glutamate interneuron. Thethalamic neurons re-
main active, but the temporal pattern of impulse generationchanges from tonic fir-
ing to bursting. These transitions are sufficient to bring the gap-junction coupled
thalamic neurons from an asynchronous (Fig. 5.12Cb) to a synchronized state (Fig.
5.12Ca). This is exactly what could be expected from the intrinsic dynamics of tha-
lamic neurons under the influence of external currents as described in section 5.6.
And it exactly corresponds to the experimentally observed changes in thalamocorti-
cal circuits at the transitions form wakefulness to sleep [32, 35].

In this conclusive simulation section, we have combined ourmodels of neuronal
excitability, pattern generation, and synchronization with recently developed simu-
lations of synaptic plasticity in homeostatic processes for an integrative approach
connecting hypothalamic and thalamic systems of sleep-wake regulation. The con-
nections were made between individual neurons with single synapses which like-
wise may represent a compound input from one brain nucleus toanother. In this
case, however, the relevant input is provided by the activation variable of postsy-
naptic receptorsar . The amplitude and time-course ofar depend not only on the
synaptic strength but, due to the superposition of the postsynaptic currents, also on
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the firing rate. In the reciprocal circuit, the firing rate essentially depends on the
input from the other neuron and, in case of the orexin neuron,is additionally mod-
ulated by the circadian input. The activation variable itself is scaled as a function
of the firing rate, i.e. transmitter or postsynaptic receptor occupation. Such complex
interdependences can only be recognized with a conductance-based approach. They
are developing from basic physiological processes and are of functional relevance
for the model dynamics [47].
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